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Abstract 

The power from array of wave energy converters can be calculated 
theoretically from semi-analytic hydrodynamic added mass and 
damping coefficients of various devices (fixed or floating). 
However, the semi-analytic approach requires the body to be an 
axi- symmetric in shape. The newly released open source solver 
NEMOH is based on the Boundary Element Method (BEM); it 

solves problems of the interactions of bodies with water waves [1]. 
NEMOH can be used to calculate hydrodynamic coefficients as an 
alternative to the semi-analytic method. In contrast to the semi 
analytic technique, one can model a body with arbitrary shape in 
BEM. In this paper, we compare the performance of NEMOH with 
the solution obtained by solving the boundary value problem 
exactly.  

Similarly to the formulation leading to a BEM, in the semi-analytic 
method we formulate the problem of water-wave interaction with 
bodies using linear inviscid wave theory. The unknown velocity 
potential is then expanded in terms of eigenfunctions in various 
zones incorporating different boundary conditions in the problem 
domain. The unknown coefficients from the eigenfunction 
expansion are then expressed in a matrix by matching the 

hydrodynamic pressure and velocity across various zones. At this 
stage, the systems of equations are truncated to a finite number of 
terms. The number of terms required is obtained by examining the 
convergence of the solution.  

We apply NEMOH to an array of two heaving devices. In this case 

we compare the solution from NEMOH with the formulation of 
based on multiple scattering. This formulation of multiple 
scattering is comprised of the wave diffraction and radiation 
problems separately where formulations have been adopted from 
Mavrakos and Koumoutsakos [2] and Mavrakos [6] respectively. 
We also compare the elapsed CPU time with increasing resolution 
in NEMOH with increasing number of terms in eigenfunction 
expansion.  

Introduction  

Wave energy is the emerging technology field that seeks to harness 
the 2 TW of wave energy available on the planet’s ocean shores 
[3] by use of Wave Energy Converters (WEC). 
Research effort in WEC arrays typically makes the simplification 
of potential flow, followed further by the subset of assumptions of 

linear wave theory. One “semi-analytical” technique formulated in 
[2] treats the array problem as a series of scattering events and can 
be used to solve the boundary value problem exactly. Meanwhile, 
BEMs have existed for decades and can be applied to solve 

problems of the same nature. NEMOH is one such software, 

released in 2014 with the notable benefit of being open source. 
The work outlined examines the performance of NEMOH 
compared to solutions based on the eigenfunction matching 
technique for the cases of a single and two heaving (vertically 
moving) cylinders. This technique has been widely used for 
solving the complete hyrdoynamic problem for a group of axi- 
symmetric floating bodies (for example see, Siddorn and Eatock 
Taylor [11]). From the resulting hydrodynamic coefficients, 
calculations for power and q factor are then compared in this paper. 

The paper forms part of a wider initiative to better understand 
WEC array performance. 

Hydrodynamic Theory of WEC Arrays 

The Boundary Value Problem 

Under the standard assumptions of linear wave theory, one seeks 
the solution of the Laplace’s equation to obtain the hydrodynamic 
force on the floating boy: 

∆Φ = 0. (1) 

A regular monochromatic wave of height 𝜂(𝑥, 𝑡) travels along 

positive x and z is positive upwards. It is prevalent in the study of 
array hydrodynamics to then assume an impermeable seabed, a 

non-zero horizontal velocity, w (i.e., in 2D the velocity field being 

defined as 𝑽 = 𝑢�̂� + 𝑤𝑗)̂ at the uniform seabed, a smooth and 

unbreaking free surface and atmospheric free surface pressure, 
conveyed respectively as 
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We factor out the time dependent part of the velocity potential (Φ) 

and associated quantities (like the free surface elevation, 𝜂) as 

Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒{𝜙(𝑥, 𝑦, 𝑧). 𝑒−𝑖𝜔𝑡} and then seek the solution of 

the time-independent velocity potential from the above 
representation of the boundary value problem (i.e., equations (1) 
to (4)).  

A WEC extracts power via its Power Take Off (PTO) mechanism 
which dictates its response to excitation. As is typical, we will 
assume WECs with PTOs and mooring systems inducing a net 

linear damping and restoring force. 

WEC interactions in arrays 



The vertically oriented, surface piercing truncated cylinders of 
uniform density that are analysed are representative of WEC 
devices which can be envisioned as large (several meters wide) 
heaving buoys. 

As incident waves 𝜙0 pass through an array, the positioning of the 

devices relative to each other will cause a diffraction of the original 

wave 𝜙𝑑. This can be conveyed in terms of a force coefficient fj in 
the jth degree of freedom for each device. Secondly, in the radiation 

problem, a radiated wave 𝜙𝑖𝐽 emanates from the body depending 

on the device’s allowed number of degrees of freedom 𝐽. Purely 

heave motions (in z;  J = 3) will emit an axisymmetrical wave and 

purely surge motions (in x; 𝐽 = 1) a bisymmetrical wave. Each 

radiated wave of a device will disturb the other devices which will 
in turn produce more radiated waves which disturb the originating 
devices and so on, in a multiple-scattering interaction. The net 
relation between each device and every other is conveyed in terms 

of added mass μJ and damping coefficients λJ in the devices’ Jth 

degree of freedom. The resulting potential will by superposition, 
be given as: 

 

𝜙 = 𝜙0 + 𝜙𝑑 +∑𝜙𝑖𝐽
𝑖𝐽

 

(5) 

Solution methods 

We briefly describe the solution methodologies in each approach 
(viz., analytical and BEM) below. 

Multiple Scattering and Eigenfunction expansion 

The phenomena of diffraction and radiations from an array of finite 
number of WECs can be dealt in exact theory through the principle 
of multiple scattering also widely used in different areas of 
physics. For example, Mavrakos and Koumoutsakos [2] 
implemented the idea of multiple scattering, in order to find the 
wave excitation force imparted on different members in an array 
based on the diffraction problem of a single device. In this 
approach, the quantities associated with each order of scattering is 

obtained from the previous order of scattering and then the force 
and moment on any device in the array is found by combining all 
of these quantities from all order of scatterings. Prior to that, the 
fluid region beneath and surrounding a device are represented by 
different series of eigenfunction expansions in terms of unknown 
Fourier coefficients. The matching of velocity and pressure across 
the interface of these various regions gives the solution of these 
unknown coefficients in each order of scattering. 

Using the above formulations, we can express the total velocity 

potential around a device in the array and in a cylindrical 
coordinate system as 

𝜙(𝑟, 𝜃, 𝑧) = −𝑖𝜔
𝐻
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where,  
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d is the water depth. With, 
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(8) 

Here, we have three different indices namely, m, j and s to sum 
over the coefficients. These are as follows. 

 m is the index of the Fourier series: in particular, m=0 

represents a monopolar (axisymmetric) wave, whereas, 𝑚 =
±1 represents a bipolar wave field. 

 j is the index of the vertical eigenfunctions 𝑍𝑗(𝑧). These 

vertical eigenfunctions are in turn functions of roots (𝛼𝑗) of 

the wave dispersion relation 𝜔2 = 𝑔𝑘tanh(𝑘𝑑) for j=0 and 

the transcendental equation  𝜔2+ 𝛼𝑗𝑔tan(𝛼𝑗𝑑) = 0 for 𝑗 ≥

1. 
 s is the index of the scattering order. 

Once the unknown Fourier coefficients in all fluid regions for each 

order of scattering are determined, the hydrodynamic force in a 
given direction (i.e., along r or z) of the device can be obtained by 
integrating the pressure on the desired surface of the device.  

Similar arguments can be extended to the radiation problems 
involving many devices as in Mavrakos [6]. The solution in this 
case depends on the solution of the radiation problem of a single 
device. But instead of splitting the region beneath the single 
cylindrical buoy in various number of ring elements (as been done 

in Mavrakos [6]) for solving the radiation problem for a single 
device, we use the integral formulation of Yeung [7].  

The formulation based on Boundary Element Method (BEM) 
in NEMOH 

In most of the cases the numerical investigations on hydrodynamic 
interactions among multiple floating objects are based on BEM. 
Prominent commercial BEM packages include WAMIT, ANSYS 
Aqwa and WAVE DYN. In late 2014, Ecole Centrale de Nantes 
released to the public their BEM called NEMOH which had 

previously been in private development for 30 years. Released as 
open source under Apache License 2.0, it is the first and currently 
only open source potential flow BEM applicable to the problem of 
WEC arrays. 

As with all potential flow BEMs, it is necessary only to discretise 
the boundary of the domain of interest as opposed to the whole 
domain itself. Through Green’s Second Identity, a so-called 
boundary integral equation can be formulated for a given problem, 

allowing solution for any point within the fluid surrounding the 
device(s). This procedure of reduction of the problem by one 
dimension greatly increases the efficiency of the calculation and is 
touted as the BEM’s main advantage over the Finite Element 
Methods (FEM).  

Details on the theoretical aspects of the NEMOH solver, including 
a discussion on the discretisation of the boundary and use of a 
numerical solution are given in [1]. 

Power absorption and array performance 

Assuming that each device in the array is optimally damped, the 
overall power from the array is given by Evans [8] as 

𝑃𝑚𝑎𝑥 =
1

8
𝑿𝑇𝑩−1𝑿. 

(9) 

Where, X is the row vector of complex excitation force coefficients 

of the form, 𝑿 = {𝑋1 , 𝑋2, 𝑋3 ,…𝑋𝑁} and B is the matrix of size 

(𝑁 ×𝑁) of the damping coefficients, 

𝑩 = [

𝐵11 𝐵12 … 𝐵1𝑁
⋮ ⋱

𝐵𝑁1 𝐵𝑁𝑁

], 

(10) 

assuming there are N devices in the array. In general N represents 
the total number of modes of oscillations (maximum 6) in the 

literature. While the degrees of freedoms are restricted to 1 (i.e., in 



the index 3 for the heave as in this paper), N becomes same as the 
total number of devices in the array. 

The reciprocity relation tells us that for any two devices i and j in 

the array, 𝐵𝑖𝑗 = 𝐵𝑗𝑖. The q or ‘interaction’ factor, as first defined 

in [5] for an array setup of a given device positioning, incident 
wave direction and incident wave frequency, conveys the extent to 
which the interactions are ‘constructive’ (q>1) or whether they are 
‘destructive’ (q<1); and it is given by 

𝑞 =
𝑃𝑎𝑟𝑟𝑎𝑦,𝑚𝑎𝑥
∑ 𝑃𝑛,𝑚𝑎𝑥𝑛

, 
(11) 

where P is power. It is of interest to investigate this variation of the 
q factor as one changes the separation, the configuration of the 
array while the number of the devices is more than two and the 

direction of the incident wave. Many researchers have investigated 
these variations (for example see, Wolgamot et al. [10]). However, 
in this paper we only focus on the separation keeping our array 
layout to be very basic with only two devices subjected to incident 
wave in line with the array. 
 
Comparison of models 

Twin Buoy 

We consider the basic array of only two devices to investigate the 
interaction phenomena in an array of WECs using the above-
mentioned methodologies. It is apparent that the scattering 
phenomena can be overly complex with an increasing number of 
devices in the array, yet we use this most basic array set up to 
investigate the applicability of the adopted methodologies and then 
gain confidence for more complex set ups. 

The schematic of the problem is shown in figure 1. In this paper 

we only consider the case for which the angle of wave incidence 
is defined by 𝛽 = 0. Then we investigate the effect of changing the 

spacing (l) on the interactions between twin buoys.  

Figure 2 shows the comparison between NEMOH and multiple 
scattering (MS) based on eigenfunction expansion (EE) 
(abbreviated as MS-EE in the figures) of the excitation force 
coefficients in heave for l=5b. Then we present the non- 
dimensional added mass and damping coefficients for the same 
spacing in figure 3. In all cases, a good agreement is obtained. 
There are small discrepancies which are yet to be resolved. Both 

of the solutions from NEMOH and MS- EE are converged with the 
set of parameters as given in the following. 

In all of these cases, we used 600 panels with all cylinders 
discretised into a 30-sided regular polygon. Whereas, in MS- EE, 
we used 7 terms for the Fourier coefficients (−3 ≤ 𝑚 ≤ +3), 7 

order of scattering, 50 vertical eigenfunctions for diffraction and 
20 vertical eigenfunctions for radiation problems.  

 

Figure 1. Schematic of array set up of twin buoys. In this paper, 
d=10.0b; h = 9.5b. 

Moreover, we found that by only considering the coefficients 
associated with m=0, we can gain a significant saving in CPU time 
while solving the radiation problem. Similar advantage can also be 
gained from NEMOH by restricting the degrees of freedom while 
calculating the wave excitation force coefficients. 

 

Figure 2. Comparison of the heave excitation force coefficients 
between NEMOH and eigenfunction expansion. 

 

 

Figure 3. Comparison of added mass and damping coefficients for 

l=5b between NEMOH and eigenfunction expansion. 

Variation of q factor 

Finally we apply the formula of power absorption (equations 9- 
11) to investigate the q factor for two different spacing, l=5b and 
l=10b, in figure 4. We also include the prediction from the point 
absorber theory of Budal [5]. A satisfactory agreement is found in 
both cases. 

We provide the elapsed CPU times for convergence studies in MS- 

EE and in NEMOH in table 1 for the diffraction problem. The 
convergence is studied in the MS- EE model in two stages: in one 
we keep the range of azimuth (m) maximum changing the order of 
interactions (the 2nd major column) and in another we keep the 
number of interaction order (s) maximum changing the azimuth 
range. In NEMOH the convergence is studied by changing only 
the number of panels on the surface of the body. Even though in 
all of the results in the paper we use the s=7 and −4 ≤ 𝑚 ≤ +4 

for a convergence upto 6 decimal points; our experience shows that 
convergence upto 2- 3 decimal points can be achieved in MS- EE 

by even using s=3 and −4 ≤ 𝑚 ≤ +4. Under this set of input, with 

the converged result, NEMOH is still found be slightly faster than 
MS- EE (5.9 m in NEMOH compared to 6.3 m in MS- EE).  

Both of the MS- EE and NEMOH has been run in a desktop PC 
with Intel core i5- 2500 3.30 GHz processor with 8 GB RAM. 

As a final illustration, we provide the free surface elevation 
obtained from the MS-EE model by solving diffraction for a given 
wave frequency around a single isolated buoy in figure 5. 

 



  

Figure 4. Comparison of q factor predicted by point absorber, 
multiple scattering and NEMOH. 

 

MS-EE (upto 7 
scattering order) 

MS- EE (−4 ≤
𝑚 ≤ +4) 

NEMOH 

m Elapsed 
CPU (in 
minutes) 

s Elapsed 
CPU (in 
minutes) 

Number 
of 
panels 

Elapsed 
CPU (in 
minutes) 

−1 ≤ 𝑚
≤ +1 

4.7887 1 2.1078 500 0.15376 

−2 ≤ 𝑚
≤ +2 

8.2529 3 6.3146 1000 0.8877 

−3 ≤ 𝑚
≤ +3 

11.63065 5 10.0948 2000 5.9 

−4 ≤ 𝑚
≤ +4 

14.891 7 14.179  

 

Table 1. Details of elapsed CPU times in MS- EE and NEMOH 
with changing different parameters. 

 

 

Figure 5. Scattered wave field around the isolated buoy obtained 
from MS- EE. The wave field is normalized by the incident wave 
amplitude (=0.01m). The radius of the device (b) is 0.1m and all 
other parameters used as in Figure 1. The incident wave frequency 
is given by kb = 0.4. 

Conclusions 

We compare the results from NEMOH (version 2.03) and the exact 
analytical theory based on linear wave theory applied to the case 
of a basic array of two WECs of heaving surface piercing truncated 
cylindrical devices. Past works which dealt with validation of the 

solution from NEMOH, mostly considered similar numerical 
models like WAMIT [9]. Here, we found that the predictions from 
NEMOH can as reliable as from the analytical model. On the other 
hand, we have found that the elapsed CPU time in NEMOH is 
slightly lower compared to the analytical model while obtaining 
the converged result. This study shows that NEMOH should also 
be applicable to arrays with more complex configurations. 
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